

The problem...

Orange wheat blossom midge Sitodiplosis mosellana Géhin (Diptera:Cecidomyiidae)

"the most serious insect pest of spring wheat in western Canada" (Wise and Smith 2009)

-

The problem: Why?

Losses of >C\$50 million in Manitoba and C\$130 million in Saskatchewan in 1995

(Lamb 1998; Lamb et al. 1999)

Impact of Outbreaks (SK)

ipact of	Cathroanto (Crt)	
<u>Year</u>	Ha Sprayed	Crop Loss
1995	510,000	\$130 million
1996	490,000	\$110 million
1997	280,000	\$ 70 million

"the most serious insect pest of spring wheat in western Canada" (Wise and Smith 2009)

3

Damage to kernels

AAFC - Saskatoon Research Centre

Infestation to yield loss

Damage Relationship (SK):
Kernels Infested
Decrease

0% -30% 40% 60% 65%

90% 79% Olfert et al. 1985

Assess your risk for next year

- Was your wheat crop downgraded by midge last season?
- Irrigated field?
- Check your region on the forecast maps

19

Midge Forecasting maps: soil coring

Wheat Midge Management

- Conventional spring wheat requires regular monitoring when crop is in a susceptible stage
- Susceptible stage when the wheat head becomes visible until crop flowering (anthesis)
- susceptibility drops dramatically at the onset of anthesis due to natural resistance from the build-up of ferulic acid
 - Elliott and Mann

Wheat no longer susceptible

Battle Plan

- Scout adult activity at start of crop susceptibility
- Insecticidal spray
- Plant midge-tolerant wheat varieties

Scouting

- Visual scout: successive evenings
- "farmers, count adults at sunset during the period from heading to flowering"
 (Elliott and Mann 1996)
- yellow sticky cards
- pheromone traps

29

Economic Thresholds

- Economic Thresholds for Wheat Midge: <u>visual</u>
- a) To maintain optimum grade: 1 adult midge per 8 to 10 wheat heads during the susceptible stage.
- b) For yield only: 1 adult midge per 4 to 5
 heads. At this level of infestation, wheat yields
 will be reduced by approximately 15% if the
 midge is not controlled.
- Also, inspect the developing kernels for the presence of larvae and larval damage.

J

Insecticides

- Lorsban (chlorpyrifos products)
- Cygon/Lagon (dimethoate)
- Lorsban, 48-72 hour residual and kills already laid eggs.
- WM are more active in the evening, best time to spray
- Avoid later season sprays: <u>preserve parasitoids</u>

Wheat midge parasitism Biological control

- Three parasitoids attack wheat midge larvae in Western Canada (Doane, 1992).
- *Macroglenes penetrans* is the dominant species and did not need to be introduced.
- *Platygaster tuberosus* and *Euxestonotus error* were introduced near Langenburg, SK in the early 90s.

Macroglenes penetrans

Egg parasitoid

30-40% reduction of next year's wheat midge population

Spraying WM popn late kills parasitoids: emerges 4-5 days after wheat midge

(Smith et al. 2004, Wise et al. 2009)

39

Macroglenes penetrans

At \$16.00/ha, the total saving in pesticide costs were over \$200 million in the 1990's

Macroglenes penetrans is the dominant species. Naturally present in North America Discovered in SK in 1984

Introduced from Europe (CABI-Delemont) to Langenburg SK. (early 1990s)

Pinned by John Doan. Image by Andrew Rigby for Tyler Wist Nov 2016 41

Platygaster tuberosula

Introduced from Europe (CABI-Delemont) to Langenburg SK. (early 1990s)

22% parasitism in the release area

Farm Savings Due to Parasitoid

Olfert et al. 2009

- √ 1991-2000, there were ~15.5 million ha of wheat that did not require a pesticide application because parasitism reduced the density of viable wheat midge below 600/m2
- ✓ At a cost of \$16.00/ha, the total saving in pesticide costs alone were over \$200 million in the 1990's

Farm Savings Due to Parasitoid

"Estimated value of the parasitoid, due to <u>reduction in insecticide</u> <u>costs</u> in Saskatchewan alone, was estimated to be in excess of \$248.3 million in the 1990s."

Olfert et al. 2009

- √ 1991-2000, there were ~15.5 million ha of wheat that did not require a pesticide application because parasitism reduced the density of viable wheat midge below 600/m2
- ✓ At a cost of \$16.00/ha, the total saving in pesticide costs alone were over \$200 million in the 1990's

Wheat Midge - Predators

- Spiders and lady beetles feed on eggs (on heads)
- Staphylinids and Carabids feed on larvae and pupae (in soil)

SK STUDY (Floate et al. 1990)

- Lab: Bembidion quadrimaculatum (9); B. obscurellum (15); Agonum placidum (43); Pterostichus corvus (48)
- Field: Daily predation of all four up to 86 midge larvae/m²

Midge <u>Tolerant</u> wheat (MTW)

- Sitodiplosis mosellana 1 (Sm1) (Lamb et. al. 2000, McKenzie et. al. 2002, Ding et al. 2000)
- Sm1 gene. Late 1990s AAFC breeders crossed this naturally occurring trait into red spring wheat (CWRS and Extra Strong) from "Clark" winter wheat = Unity VB in 2007 (Fox et al. 2010).

55

Midge <u>Tolerant</u> wheat (MTW)

- Sitodiplosis mosellana 1 (Sm1) (Lamb et. al. 2000, McKenzie et. al. 2002, Ding et al. 2000)
- Sm1 gene. Late 1990s AAFC breeders crossed this naturally occurring trait into red spring wheat (CWRS and Extra Strong) from "Clark" winter wheat = Unity VB in 2007 (Fox et al. 2010).
- 2010: AC[®] Unity VB, AC[®] Goodeve VB, AC[®] Glencross VB

Midge <u>Tolerant</u> wheat (MTW)

- Sitodiplosis mosellana 1 (Sm1) (Lamb et. al. 2000, McKenzie et. al. 2002, Ding et al. 2000)
- Sm1 gene. Late 1990s AAFC breeders crossed this naturally occurring trait into red spring wheat (CWRS and Extra Strong) from "Clark" winter wheat = Unity VB in 2007 (Fox et al. 2010).
- 2010: AC[®] Unity VB, AC[®] Goodeve VB, AC[®] Glencross VB
- 2017: 20 varieties with Sm1, CWRS, CPSR, CWES, CWAD, and GP/SP

57

Midge Tolerant wheat (MTW)

- Sitodiplosis mosellana 1 (Sm1) (Lamb et. al. 2000, McKenzie et. al. 2002, Ding et al. 2000)
- Sm1 gene. Late 1990s AAFC breeders crossed this naturally occurring trait into red spring wheat (CWRS and Extra Strong) from "Clark" winter wheat = Unity VB in 2007 (Fox et al. 2010).
- 2010: AC[®] Unity VB, AC[®] Goodeve VB, AC[®] Glencross VB
- 2017: 20 varieties with Sm1, CWRS, CPSR, CWES, CWAD, and GP/SP
- 2018: 28 varieties with Sm1

Midge tolerant wheat (MTW)

- 2015 MTW on approximately 1/3 of prairie wheat acres
- 2016 available in CWRS, CWES, CPSR classes.
- One CWAD (durum) Varietal blend (VB) (AAC Marchwell) widely available
- · limited release, CDC Carbide durum.
- VB options available with both midge and fusarium head blight tolerance http://www.midgetolerantwheat.ca
- Refer to the Provincial Seed Guides and seed sellers for wheat suitable to your area

59

Midge Tolerant Wheat - Varieties

Tolerant Variety	Refuge Variety	Class
AC® Unity VB	AC® Waskada	CNHR
AC® Goodeve VB	AC Intrepid	CWRS
AC® Glencross VB	AC® Burnside	CWES
AC® Fieldstar VB	AC® Waskada	CWRS
AC® Shaw VB	AC Domain	CWRS
CDC Utmost VB	Harvest	CWRS
AC® Conquer VB	5701PR	CPSR
AC® Vesper VB	AC® Waskada	CWRS
AC® Enchant VB	AC Crystal	CPSR

At least another 10 varieties since 2017

Sm1 mode of action

- 1st instar larva starts feeding (gall forming midge)
- Plant reacts quickly to larval feeding and increases ferulic and p-coumaric acid levels (Ding et al. 2000)
- Larvae stop feeding and starve to death

Soft White spring wheat

 Sm1 naturally found in many white spring wheat varieties, recent genetic markers

PROBLEM! ...no refuge. No VB. No stewardship

- AC Sadash, AAC Chiffon, AAC Indus
- Mix 1 bushel AC Andrew to 9 bushels SWS Sm1

Potential WM resistance traits

Mechanical resistance?

Jones Fife x CDC Stanley: in seed increase

87

Potential WM resistance traits

CDC Teal: Pierre Hucl CDC breeder

Mechanical resistance?

Acknowledgements

- Jill Sauter and Synthesis-Network for MTW infographics
- Techs and summer students of the Wist lab
- ADF, Western Grains, SaskWheat, Alberta Wheat, Manitoba Wheat
- · Four decades of WM researchers
- Dr. Owen Olfert for life cycle slides

Government of Saskatchewar

CANADIAN AGRICULTURAL

Questions?

When we kill off the natural enemies of a pest, we inherit their work" **– Carl Huffaker**

ie. Not late in the WM flight period

@FieldHeroes

Twitter @TylerWist1
Tyler.Wist@canada.ca 92