

Wheat Wise On-Farm Trial Program

Foliar-Applied Nitrogen-Fixing Biological Products For Wheat

Wheat and canola generally require a large supply of nitrogen (N) to support high yields and quality. New, commercially available biological products may have the ability to facilitate biological N fixation in non-legume crops, potentially reducing the N fertility requirements of these crops. However, there is little publicly available data regarding the performance of N-fixing biological products on wheat.

Objective

To determine if there are agronomic and economic benefits of applying a commercially available, foliar-applied N-fixing bacteria product (Envita[®]) in wheat.

Option A: Two treatments		Option B: Four treatments	
1)	Untreated check	1)	Normal N rate + Untreated
2)	Envita® at recommended rate and timing	2)	Normal N rate + Envita®
L		3)	Reduced N rate + Untreated
		4)	Reduced N rate + Envita®

The treatments were replicated and applied in randomized strips. Option A trials were replicated four times (8 plots total) and Option B trials were replicated three times (12 plots total). All plots were managed the same agronomically including seeding date, variety, seeding depth, seed treatment, and pesticide application.

Procedure

The following procedure was followed at all trial sites, unless otherwise specified in the individual site reports:

- Spring soil samples were collected at each trial site prior to seeding and fertilizer application to assess residual soil nutrient levels. A minimum of 12 soil cores were collected throughout the trial area, separated by 0–6" and 6–24" depths.
- The normal N fertilizer rate was determined by the producer and their agronomist as per their management practices. The reduced N rate treatments were 90 percent or less of the normal N rate. Actual applied N rates were documented.
- 3. For Option A, the entire field was seeded at the normal N fertilizer rate and Envita[®] treatment strips were established at the recommended timing using the provided randomized field plan.
- 4. For Option B, N fertility treatments were established at seeding time (or N fertilizer application time) and Envita[®] application was completed at the recommended timing using the provided field plan.
- 5. Envita[®] was either tank-mixed at herbicide timing or applied as a separate pass. Label recommendations were followed.
- 6. Yield was determined for each plot separately by weighing with a weigh wagon or grain cart with scale.
- 7. Grain samples were collected from each plot separately for grain quality analysis.

Data Collection

- Spring soil sample
- Spring plant density
- Yield (corrected for moisture content)
- Grain quality (protein content, test weight, seed size)
- General observations throughout the season
- Weather data (Daily temperature and precipitation)
- Management (applied fertilizer rates, seeding date, pesticide applications, etc.)

Sask Wheat wishes to thank Syngenta for their support by donating Envita[®].

