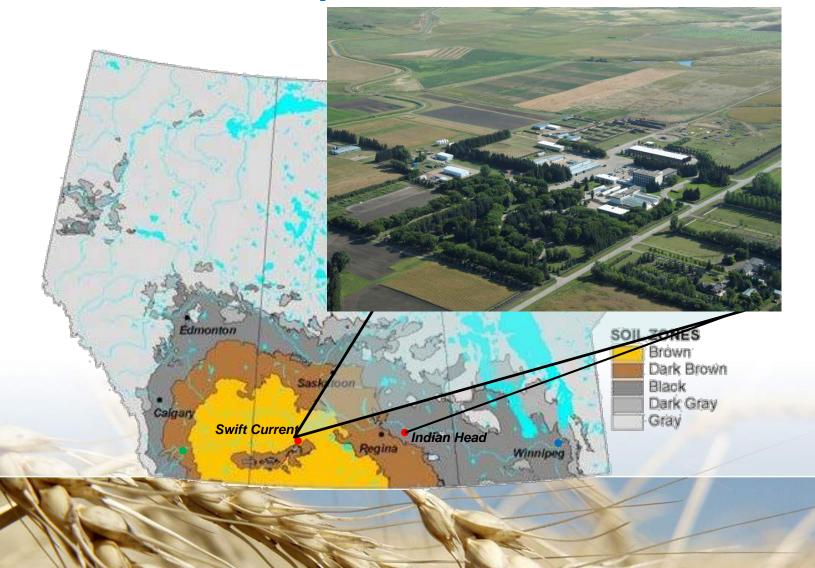
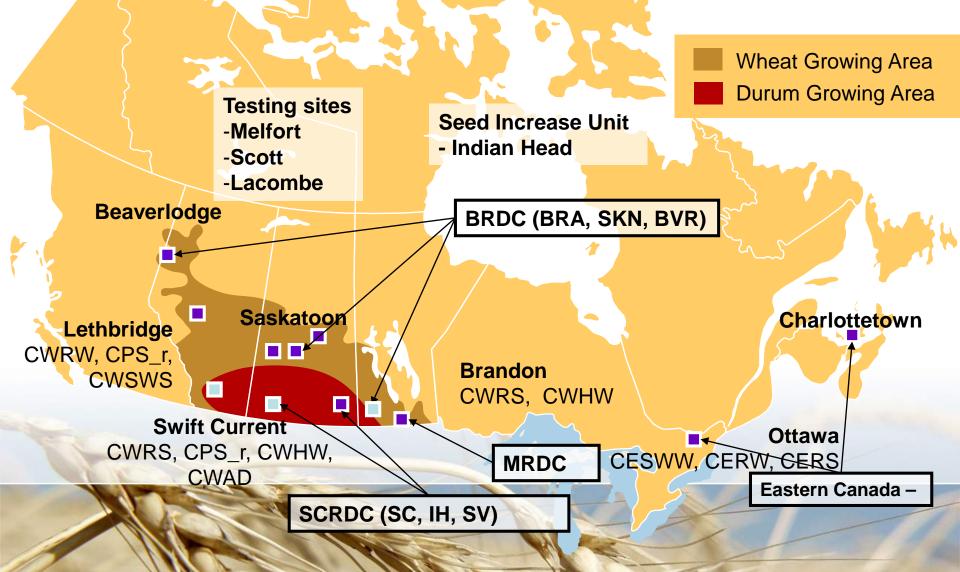


Developing 'Quality' Wheat Varieties: Advances in wheat breeding and research





AAFC – Swift Current Research & Development Centre

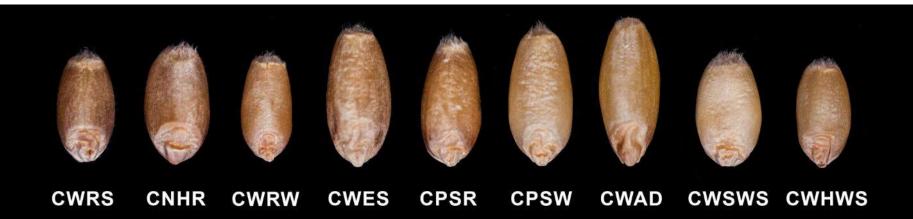
AAFC's Wheat Breeding Sites and Satellites

Swift Current Wheat Breeding

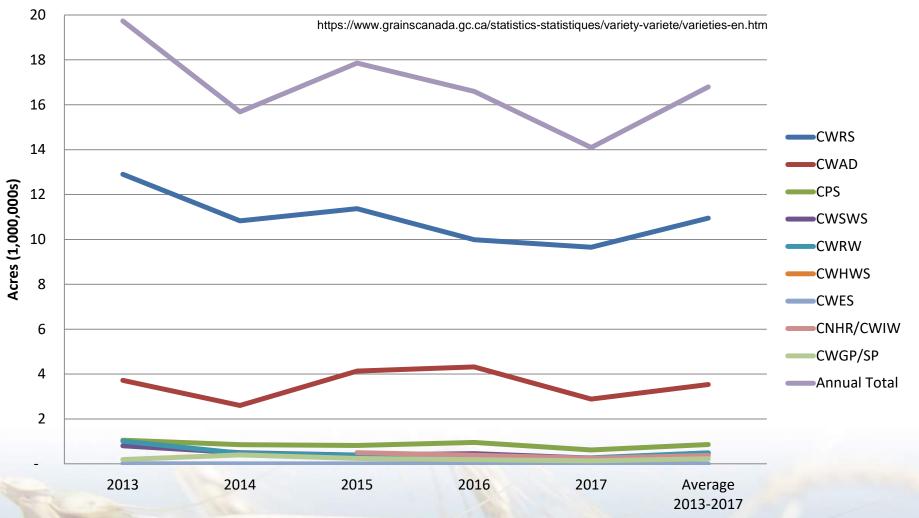
SCRDC Wheat Scientists

Dr. Samia Berraies	Term Scientist – Wheat/Durum FHB Resistance
Dr. Vijai Bhadauria	Quantitative Genetics
Dr. Firdissa Bokore	Term Biologist – Wheat Pathology / Doubled Haploidy
Dr. Richard Cuthbert	CWRS, CPS and Hard White Wheat Breeding
Dr. Myriam Fernandez	Pathology: Root, Leaf and Kernel Diseases
Dr. Ron Knox	Wheat Pathology & Biotechnology
Dr. Lin Li	Term Scientist – Durum Genetics
Dr. Yuefeng Ruan	Durum Wheat Breeding
Dr. Raja Ragupathy	Geneticist
Dr. Jatinder Sangha	Crop Physiology (Grain Quality)

Swift Current Wheat Breeding Collaborations


Market Classes – SCRDC Varieties

Bread (Hexaploid) Spring Wheats:


- CWRS Canada Western Red Spring
- CPS_r Canada Prairie Spring Red
- CNHRS Canada Northern Hard Red Spring
- CWHWS Canada Western Hard White Spring
- CWSP Canada Western Special Purpose

Durum (Tetraploid) Wheat:

• CWAD - Canada Western Amber Durum

Insured Wheat Class Acreages (2013 to 2017)

SCRDC CWRS Varieties – Currently Available

AAC Brandon	AAC Elie	AAC Connery	AAC W1876
CWRS	CWRS	CWRS	CWRS
High yield strong strawed semi- dwarf	High yield strong strawed semi- dwarf	High protein, strong strawed semi-dwarf. Awnless	Similar to Carberry in yield and plant type.
FHB: MR	FHB: Intermediate	FHB: MR Doubled Haploid Excellent stripe rust resistance	FHB: Intermediate Selected for end-use quality by Warburtons
SeCan	ALLIANCE	CANTERRA SEEDS	Warburtons Canterra SEEDS

SCRDC CWRS Varieties - New

AAC Viewfield	AAC Redberry	AAC Tisdale	AAC Alida VB
CWRS	CWRS	CWRS	CWRS
High yield/protein semi-dwarf very short/strong straw	High yield/protein semi-dwarf; early heading & maturity	High protein and early maturity	Midge Tolerant high yield/protein semi- dwarf with very strong straw
FHB: Intermediate Doubled Haploid Excellent yield in water limited	FHB: Intermediate Doubled Haploid	<i>FHB: MR</i> Lower FHB symptoms	FHB MR Doubled Haploid Excellent disease package, lower FHB
environments		Gymptomo	symptoms and lower DON accumulation
FPGenetics.		SeCan	Secan Midge Tolerant WHEAT Plant-Protect-Preserve

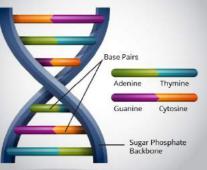
SCRDC CWRS Varieties – Just supported

	BW5011	BW5013
	CWRS	CWRS
	Midge Tolerant ~14% higher yield semi-dwarf short/strong straw	Midge Tolerant ~12% higher yield semi-dwarf short, very strong straw
	FHB: MR	FHB: Intermediate
	Excellent disease package, lower FHB symptoms and lower DON accumulation	Excellent disease package, FHB resistance similar to Carberry
	SeCan	SeCan
10011	MIDGE TOLERANT WHEAT Plant-Protect-Preserve	MIDGE TOLERANT WHEAT Plant-Protect-Preserve

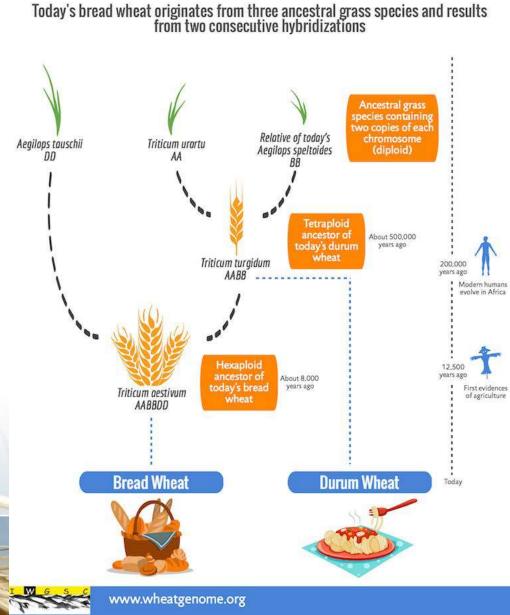
SCRDC CPS_r/CNHR/HW Varieties

AAC Penhold	AAC Goodwin	AAC Concord	AAC Cirrus
CPS_r	CPS_r	CNHR	CWHWS
Very short/strong strawed semi-dwarf	Very stable high yield, high protein and strong straw	Very solid stem, high yield with improved FHB resistance.	Short/strong strawed hard white with improved disease resistance.
FHB: MR	FHB: Intermediate Doubled Haploid	FHB: Intermediate	FHB: Intermediate
Stripe rust resistance (MR)		Solid stem would likely confer very good resistance to the Wheat Stem Sawfly	
SeCan	SeCan	SEEDS	FPGenetics.

Bread Wheat


Wheat provides 1/5 of all calories & protein consumed globally.

Canada produces ~30 MT annually. (~740 MT produced globally).


Large genome – CHALLENGE!

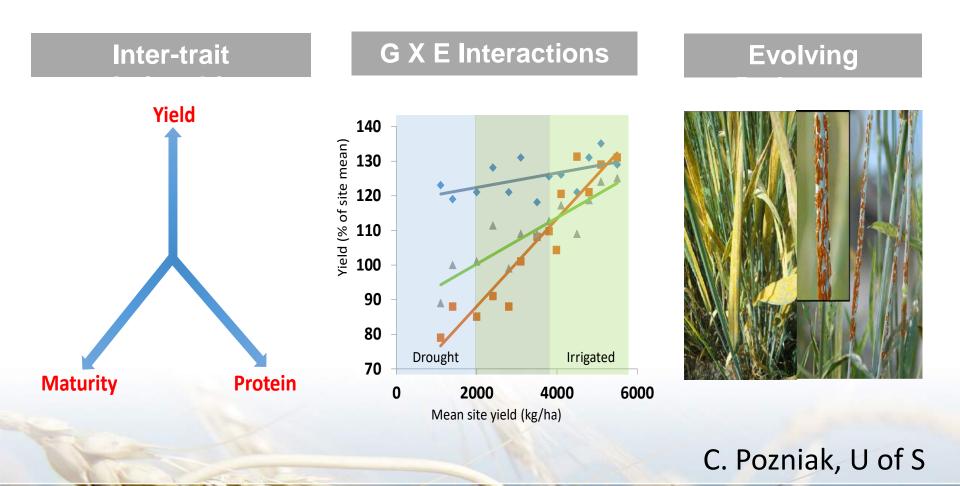
- 17 billion base pairs
- 5X larger than human genome
- 105,000 genes

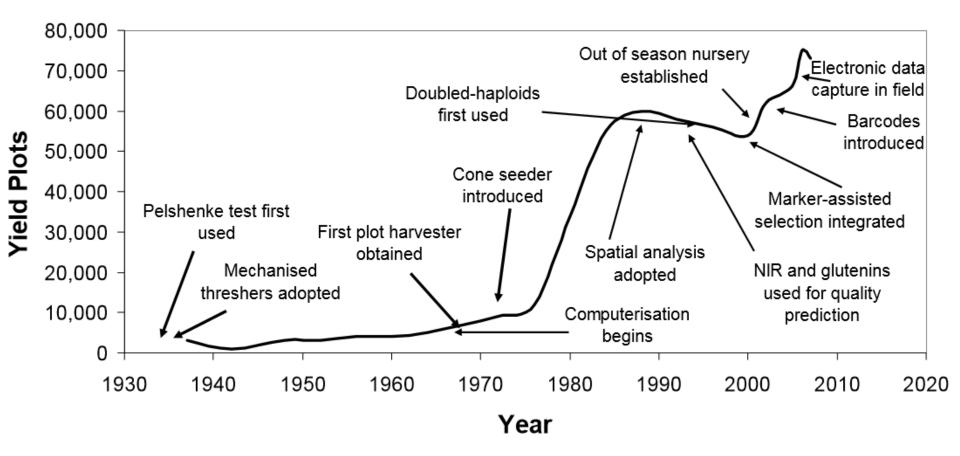
DNA Structure


Improving Bread Wheat Varieties – Better, not more.

Agronomics

Disease/Pest Resistance


End-Use Quality


Red Fife

AAC Alida VB

Challenges in wheat breeding

Chronology of technologies in breeding

Agronomics

Producers need cultivars which yield well and are resilient

Grain Yield

Grain Protein

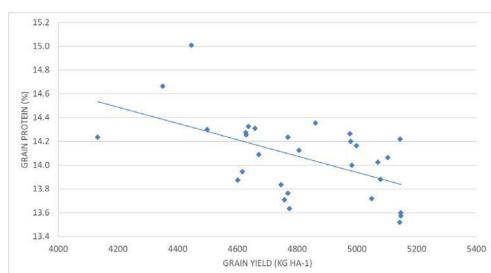
Maturity

Height (Semi-Dwarf)

Strong Straw Strength

Threshability (shattering)

Test Weight


Kernel Weight

Water Use Efficiency (drought tolerance)

Nitrogen Use Efficiency

Cold tolerance - Early spring seeding

Grade Protection

Disease/Pest Resistance (Biotic Stresses)

Fusarium Head Blight/Mycotoxins

Leaf rust, Stem Rust, Stripe Rust

Common Bunt

Loose Smut

Leaf spot complex

Ergot

Wheat Stem Sawfly

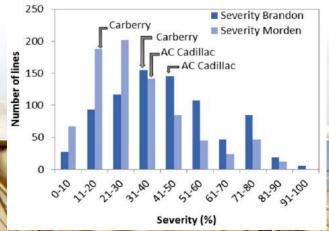
Orange Wheat Blossom Midge

Durable genetic resistance

Adult plant resistance vs. major gene; Pyramiding resistance genes

Disease Resistance

Fusarium Head Blight


Fusarium damaged kernels Mycotoxins – Deoxynivalenol (DON)

Resistance is quantitatively inherited Some major loci (Fhb1) No loci have been officially cloned!

Originally diverse sources of resistance

Sumai3, Wuhan, Maringa, Wangshubai, etc...

Fusarium Head Blight Ratings

'R' rating does not imply symptom-free

AAC Tenacious: (R) →

Morden 2017 FHB Nursery; S. Berraies

Fusarium Head Blight Ratings

ISD = (20% incidence + 20% severity + 60% DON)

Fusarium Head Blight Ratings

15

ISD = (<u>20% incidence</u> + <u>20% severity</u> + <u>60% DON</u>)

Disease Resistance

Common Bunt

Rusts Stem (Ug99)

Leaf

Loose Smut

Ergot

Leaf Spot Complex

Pest Resistance

Wheat Stem Sawfly

- Solid stem cultivars (Lillian, AAC Concord)
- SSt1 solidness gene (Nilsen et al. 2017)

D

66.2 r

66.6 n

67.4 r

67.8

68.5

BobWhite_c45118_495 wsnp_Ex_c16569_25082817

Excalibur_c16569_535 BS00079029_51

- Tdurum_contig10408_1548

Tdurum_contig59566_2309

Tdurum_contig59566_4435 Kukri_c55981_194 GENE-1910_358 Kukri_rep_c71747_150 TA004381-1229 Kukri_c29615_377

wsnp_JD_c18509_16968425 Tdurum_contig59566_1534

BS00091257_51

Pest Resistance

Orange Wheat Blossom Midge

- Sm1 gene (Goodeve, AAC Alida)

Canada Western Red Spring

Most restrictive class for end-use quality in Canada used for production of high volume pan bread

used alone or in blends with other wheat for hearth bread, steamed bread, noodles, flat bread, common wheat pasta

Canada Western Red Spring

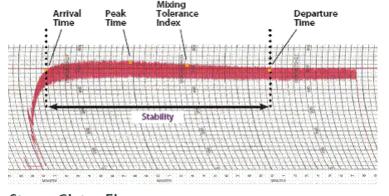
Pre-Harvest Sprouting (Falling Number)

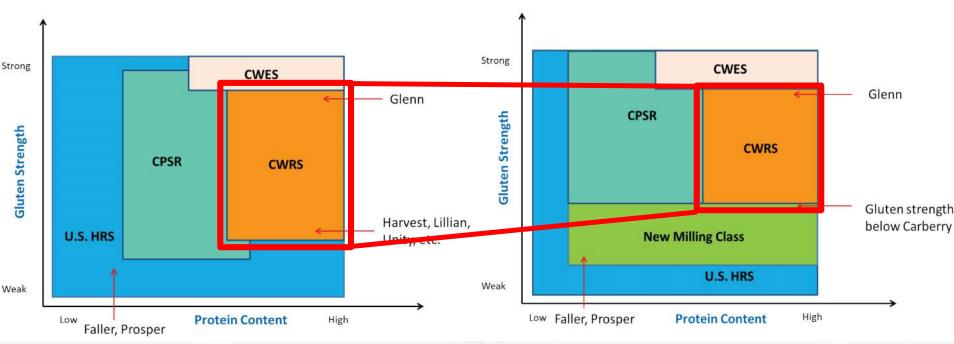
Protein (grain, flour)

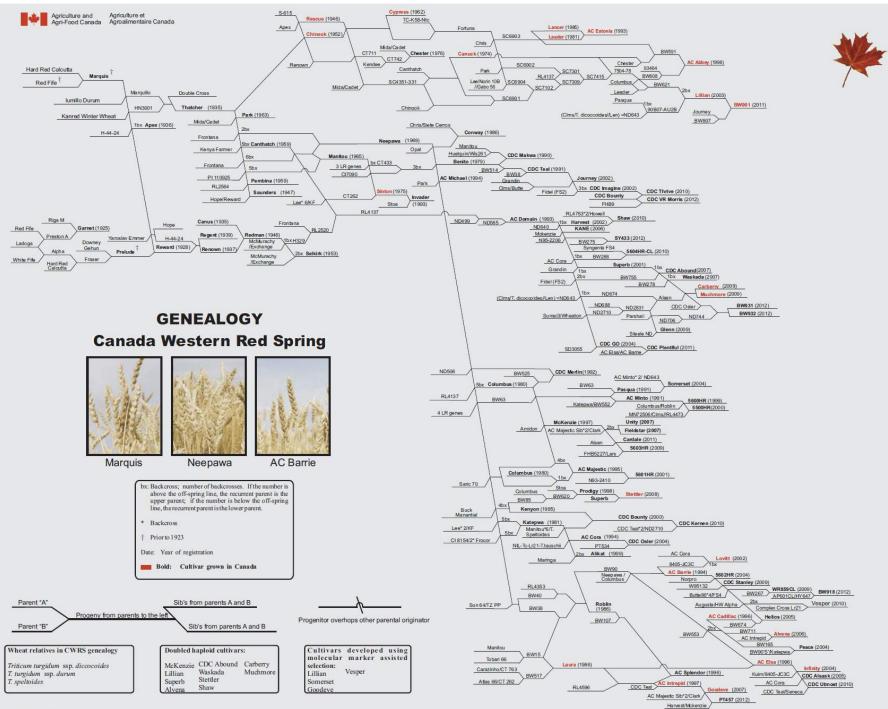
Milling (flour yield, flour ash, kernel texture)


Gluten Strength/Extensibility (mixo-, farino-, extenso-graph)

Baking (water absorption, crumb structure, loaf volume)


(Noodle Parameters)

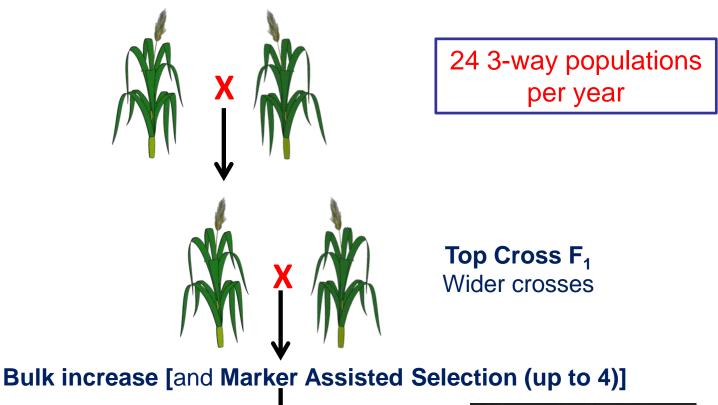


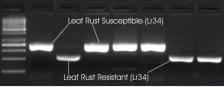

Wheat Class Modernization

Previous Targets

Current Targets

http://www.grainscanada.gc.ca/consultations/2015/classes-pdgc-2015-en.pdf




© 2012 SPARC

Swift Current Breeding Strategy

- Low diversity in parents
 - to maintain quality profile
 - diversity \rightarrow linkage drag on economically important traits
- Low cross numbers
 - ~24 3-way, 12 Doubled Haploid populations
- Larger populations (mine recombination)
- Simultaneous Qualitative and Quantitative trait selection
 - Heat/Drought Stress

Swift Current CWRS Breeding Pipeline

Space planted F₂ disease nursery

F2 space planted nursery (300,000 single plants) Plant type (height/straw/maturity) Inoculated with Leaf rust and stem rust Natural stripe rust sometimes Seed inoculated with common bunt Orange wheat blossom midge sometimes

1 plant on average becomes a variety

The state of the state

to the match of the art of the state of the second of

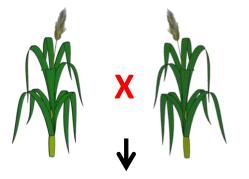
Contra-Season Nursery – Real World Speed Breeding

1 F_2 plant \rightarrow 1 F_3 row Assess materials for agronomics/diseases

Sufficient seed for yield/disease/quality evaluation in next growing season

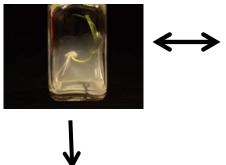
F4/F6/F8/DH yield trials Plant height, lodging, maturity Grain yield Grain protein Test weight Thousand kernel weight Quality (Kernel hardness, Flour yield, Gluten strength)

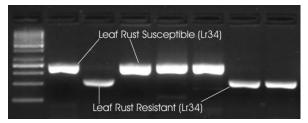
FHB nurseries (F4/F6/F8/DH)


[Morden, Brandon, Carman] MB [Indian Head] SK Incidence & Severity = Visual Index (\$) Deoxynivalenol (DON) strategically (\$\$\$\$)

FHB Resistance Breeding

We are making progress!


Swift Current Double Haploid Program


12 DH populations per year

Double Haploid Program

High Value Crosses

Marker Assisted Selection

Pure breeding progeny (within 1 year)

Lillian, Carberry, Muchmore, Stettler, AAC Connery, AAC Viewfield, AAC Redberry, AAC Alida VB

Wheat Breeding Efficiency

Success in breeding is ultimately efficient use of resources:

-Tools - Yield plots, disease nurseries, quality testing, double haploids, etc... -300,000 F2 plants – ~1 plant is a variety.

-8,000 DH lines - ~1 plant is a variety.

We are bound by recombination (meiosis)

-Population size is important (increased gametes).

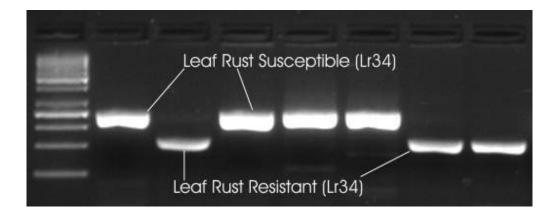
-Assessing progeny with precision/accuracy is imperative.

Daughte

Meiosis

Meiosi

Homologous Chromosome


nterphase

Marker Assisted Breeding

We can improve our odds of finding desirable genotypes by using markers. This has been done for over 20 years.

Parent 'A' has an important gene. Parent 'B' does not have the gene. A DNA marker is tightly linked to this gene which we can screen on progeny and discard lines without the gene.

1600 advanced lines * \$50 a plot @ 3 locations = \$240,000

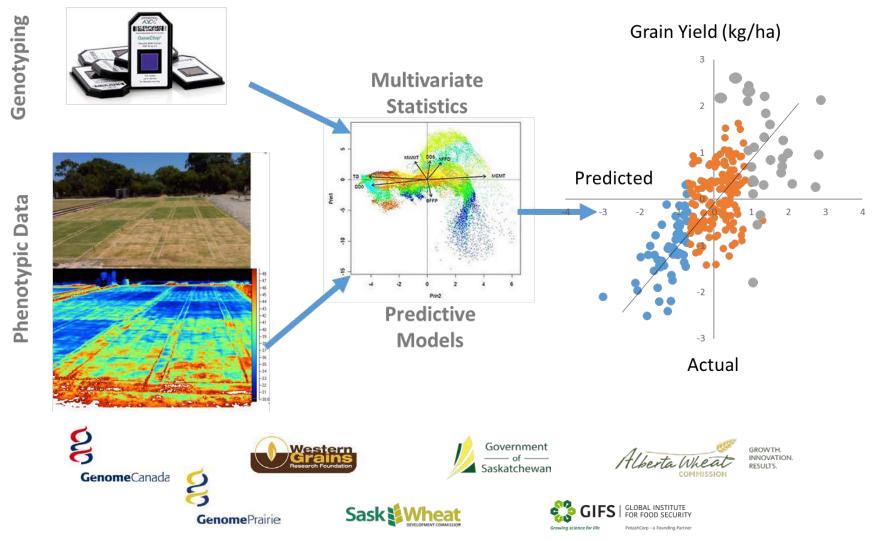
If we did not discard lines lacking the gene, ~800 lines would not likely be useful.

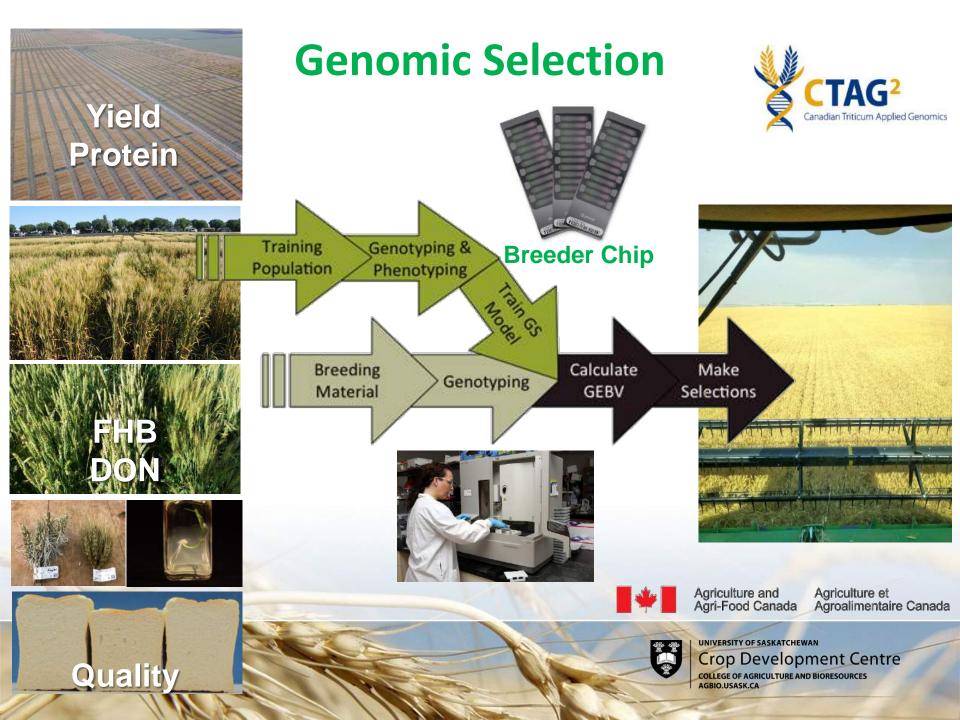
If we ACTIVELY discard the non-carriers at an early generation, the 1600 advanced lines can all be used to further screen for improved yield, FHB resistance, quality, etc... \rightarrow better variety

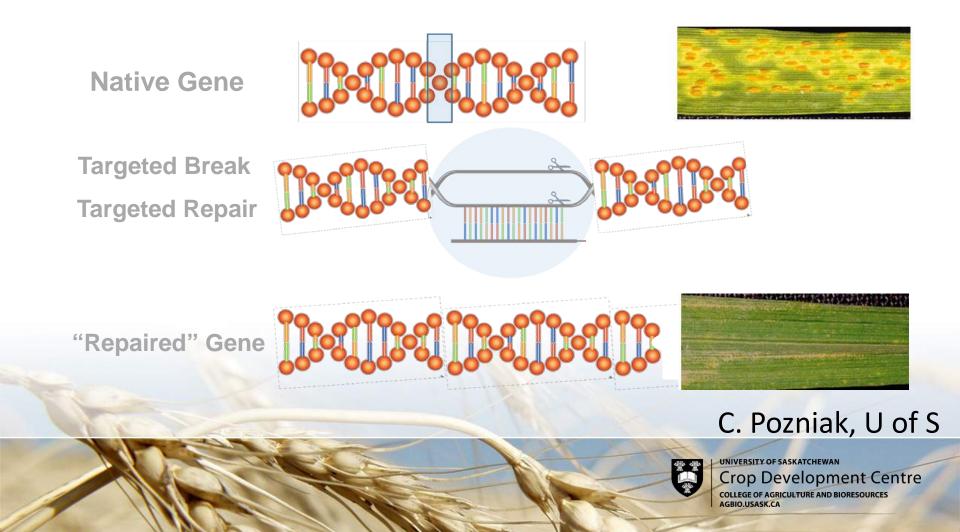
Cost to screen with the marker - \$2 per line = \$3200

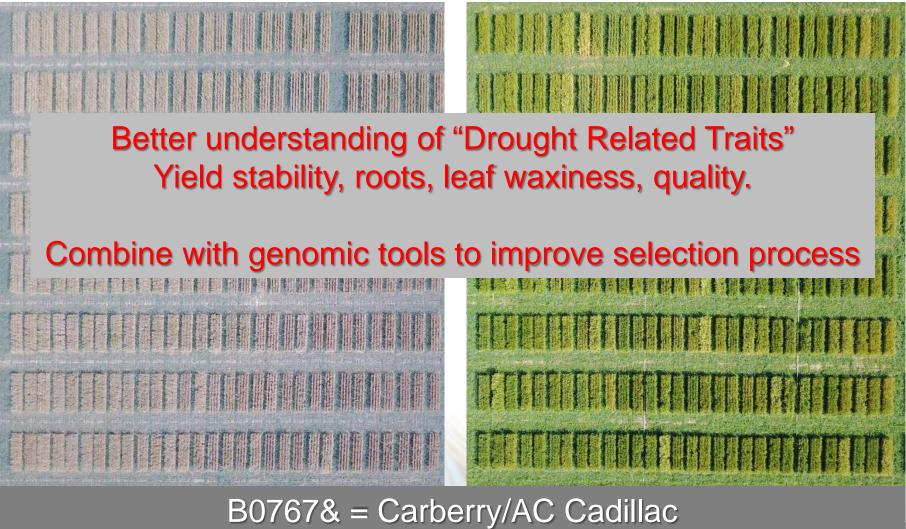
Marker Assisted Breeding

What if we could look at the genotype (genes) of all lines/plants in early generations of the breeding program?




"Wheat Breeding Chip" → Cost effective genotyping


Predictive Breeding – A Biometric approach 'Genomic Selection'



When we know the genes...

CRISPR-CAS: A "targeted" plant breeding technology

Abiotic (Drought/Heat) Stress 2017

Same block of land – Same day – rainfed vs irrigated

Drought performance 2017

CWRS Checks (% of Katepwa) 11 Sites Western Prairies

The future of wheat breeding?

We have come a long way, but much more to do...

Access to tools increases efficiencies \rightarrow better varieties.

Genomic selection will likely allow the "bad" to be discarded faster than previously possible.

Gene editing is a promising technology. We need to understand the genes involved.

Phenotyping remains king!

Thank you!

Government _____ of ____ Saskatchewan

Agriculture and Agri-Food Canada Agriculture et Agroalimentaire Canada

Test Name	Target Class
BW1041	CWRS
BW1045	CWRS
BW1048	CWRS
BW1049	CWRS
BW5011	CWRS
BW5013	CWRS
BW5022	CWRS
PT485	CWRS
PT596	CWRS
PT650	CWRS
PT782	CWRS
PT783	CWRS
PT784	CWRS
PT785	CWRS
DT878	CWAD
DT881	CWAD
DT591	CWAD
NH004	CNHR
GP190	CWSP spring
KWS Alderon	CWSP spring

PGDC-PRCWRT 2018

20 new wheat lines supported for registration

